On recombination-defective meiotic mutants in Drosophila melanogaster.

نویسندگان

  • A T Carpenter
  • L Sandler
چکیده

The genetic effects of four recombination-defective meiotic mutants in D. melanogaster on recombination, segregation and the relationship between the two have been examined. The results suggest the following. (1) The anomalous meiotic segregation observed in females carrying recombination-defective meiotic mutants is a normal consequence of the reduction in exchange; each recombination-defective mutant can, therefore, be defined by a single lesion in the control of recombination. (2) Of the operations used to date to characterize this lesion, the most informative is whether the decrease in recombination is uniform along the chromosome arm or nonuniform; in particular, if the formation of recombinants is visualized as a two-step process consisting of the establishment of possible exchange points (exchange preconditions) followed by exchange itself, then mutants that uniformly decrease crossing over involve defects in the second step while mutants that result in a nonuniform decrease involve defects in the establishment of exchange preconditions. (3) Of the fourteen loci identified by recombination-defective meiotic mutants, only one (with two alleles) is involved in exchange itself; the others all reduce recombination most drastically in distal regions, suggesting that the establishment of exchange preconditions involves polar processes. (4) A very general description of the polar establishment of exchange preconditions is presented; this description has the property that if a precondition meiotic mutant affects interference, the coefficient of coincidence will be increased in proportion to the decrease in recombination which is what is observed for all recombination-defective meiotic mutants studied to date.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroduplex DNA in meiotic recombination in Drosophila mei-9 mutants.

Meiotic recombination gives rise to crossovers, which are required in most organisms for the faithful segregation of homologous chromosomes during meiotic cell division. Characterization of crossover-defective mutants has contributed much to our understanding of the molecular mechanism of crossover formation. We report here a molecular analysis of recombination in a Drosophila melanogaster cros...

متن کامل

An analysis of regional constraints on exchange in Drosophila melanogaster using recombination-defective meiotic mutants.

The frequency of crossing over per unit of physical distance varies systematically along the chromosomes of Drosophila melanogaster. The regional distribution of crossovers in a series of X chromosomes of the same genetic constitution, but having different sequences, was compared in the presence and absence of normal genetically mediated regional constraints on exchange. Recombination was exami...

متن کامل

The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER.

To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for...

متن کامل

mei-P22 encodes a chromosome-associated protein required for the initiation of meiotic recombination in Drosophila melanogaster.

Double-strand breaks (DSB) initiate meiotic recombination in a variety of organisms. Here we present genetic evidence that the mei-P22 gene is required for the induction of DSBs during meiotic prophase in Drosophila females. Strong mei-P22 mutations eliminate meiotic crossing over and suppress the sterility of DSB repair-defective mutants. Interestingly, crossing over in mei-P22 mutants can be ...

متن کامل

Meiotic recombination in Drosophila Msh6 mutants yields discontinuous gene conversion tracts.

Crossovers (COs) generated through meiotic recombination are important for the correct segregation of homologous chromosomes during meiosis. Several models describing the molecular mechanism of meiotic recombination have been proposed. These models differ in the arrangement of heteroduplex DNA (hDNA) in recombination intermediates. Heterologies in hDNA are usually repaired prior to the recovery...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 76 3  شماره 

صفحات  -

تاریخ انتشار 1974